

ENVIRONMENTAL AND EARTH SCIENCES RESEARCH JOURNAL

Simulation of daylight and artificial lighting integration and energy savings

Sutapa Mukherjee

Assistant Professor, Electrical Engineering Department B.P. Poddar Institute of Management & Technology, Kolkata-700052, INDIA

Email: mirasutapa@gmail.com

ABSTRACT

This paper aims to find out integrated lighting simulation, the contributions from both the daylighting system and from the artificial lighting system are simultaneously taken into account. The concept behind this integrating lighting system is that the light output of individual luminaire mounted over a region of working plane is to be controlled according to the available daylight in that particular region. Any luminaire can be kept off when daylight is sufficient or can be operated at different dimming level and even at full glow when available daylight is less or insignificant. The adequacy of daylight availability is judged on the basis of desired average illuminance level on working plane. Here simulation is done using MATLAB coding. This paper provides information on daylight availability and the dimming levels of all artificial light sources which are set accordingly so that contribution from artificial lighting system together with available daylight meets desired lighting level and uniformity. These are demonstrated by isolux diagram and illuminance distribution for winter with north facing window orientation and local time 12 noon. Data base is generated for eight different window orientations, five local times for winter for corresponding CIE (International Commission on Illumination) SSLD (Standard Sky Luminance Distribution) identified for Roorkee.

Keywords: Integrated Lighting Simulation, Uniformity of Illuminance, Dimming Value, Isolux Diagram, Lighting-Load, Average Illuminance.

1. INTRODUCTION

Prediction of daylight availability in an interior space at different seasons throughout a year is important for daylighting design. This prediction of daylight availability is made either in absolute illuminance or in relative illuminance with respect to external illuminance. In either case sky luminance distribution model or data is required. CIE (International Commission on Illumination) proposed its homogeneous sky types with the understanding that the 15 sky luminance distributions represent the sky type at any location all over the world for different seasons. Out of 15 sky types, five types represent overcast skies, five types represent intermediate skies and the rest five types represent clear skies [1]. Attempts have been made earlier to utilize CIE 15 General Sky models for daylight predictions [2] and also to correlate these Standard models with measured sky luminance data [3]. So, to utilize the CIE Standard general sky model for the prediction of daylight illuminance at a particular location, the relevant sky type representing the prevailing sky luminance distribution for different seasons throughout the year must be known. Daylight Coefficient (DC) technique is the commonly used tool for daylighting design using sky luminance distribution [4,5,7]. Under IDMP (International Daylight Measurement Program) monthly average hourly sky luminance distribution data was available in India at Roorkee (latitude 290 51' (N), longitude (E)

77053') at three different seasonal conditions-summer solstices, winter solstice and equinox [6]. With the help of these data and DC method sky types of Roorkee are identified for three different seasons [8]. With the identified sky the amount of available daylight on the horizontal working plane of the simulated room is being calculated [9,10,11,12]. In the integrated lighting simulation, the contributions from both the daylighting system and from the artificial lighting system are simultaneously taken into account. Some steps are followed to do the total simulation. In the first step using Matlab program, the distribution of daylight illuminance on the working plane is to be recorded for particular time, season and sky type. In the second step on the basis of daylight availability from isolux diagram, the required extra illuminance value is obtained to achieve the desired illuminance value on the working plane. It also indicates the different dimming levels of artificial luminaire depending upon their respective positions, e.g. all the artificial luminaires situated near the window can be switched off (100% dimming); on the other hand, those situated at the far end of window is to be set at full glow (0%dimming). The luminaires situated at the intermediate positions are to be set at suitable intermediate dimming levels. In the third step, program is run to get the effect of integrated lighting system on the working plane. At this stage, it needs to check whether desired light level and uniformity on working plane is achieved or not. In case of noncompliance of light distribution, we need to go back to second step to adjust dimming levels.

Computation Block diagram of integrated lighting simulation.

The grid specific integrated illuminance (block 3) is the sum of illuminance values due to grid specific artificial lighting system (block 1) and daylighting system (block 2). This is explained by the block diagram as shown in Figure 1.

Figure 1. Computation block diagram for integrated lighting

2. CASE STUDY

. In this case study, a room of following specifications is considered for dynamic simulation.

- Room dimension. 6m*5m*3m
- Window dimension. Window area equals to 20% of floor area (30m²) is taken.
- W_h (window height)=1.5m (fixed).
- Width of window area. 4m.
- Ceiling, wall and floor reflectance. 60%, 60% and 10%.
- Glazing material. Oceanic blue.
- Working plane height. 0.80m (fixed).
- Window sill height. 1.0m (fixed).
- Window orientation. 0⁰(North) to 315⁰(NW) at an interval of 45⁰.

Sky type 15(VI.6) prevails in Roorkee during summer and equinox and sky type11 (IV.4) prevails in winter [8]. Keeping the identified sky type fixed, the variation of sky luminance pattern is considered taking different local time and corresponding zenith luminance (L_z).

Other following variables are taken in this simulation-Location. Roorkee [29⁰51' N; 77⁰53' E]

Local time. 8am, 10am, 12noon, 2pm and 4pm.

Day number. J=15(winter); J=74(Equinox); J=166(summer)

The following design parameters are set to evaluate the integrated lighting simulation for different local time for eight window orientations for winter

i) Average maintained illuminance and

ii) Uniformity of illuminance on the entire working plane.

iii) Lighting load with dimming and

iv) % Lighting load reduction with respect to full load

The expected grid-specific E_{avg} on this working plane is set to a value \geq 500Lux and overall uniformity U₀~0.6. To fulfil this target, the corresponding deficiency of daylight on the specific grid position of the working plane is compensated by adjusting the dimming value of the nine luminaires situated over those grids. Daylight isolux diagrams for a particular season and north window orientation provide an idea regarding the availability of daylight on the working plane due to direct and interreflected contribution of daylight. This diagram and point-specific lux values guide to set dimming values of 9 luminaires.

The layout of luminaires and grid points are shown in Figure 2.

\otimes	= grid point
	= Luminaire
L	= Length
W	= Width
Ww	= Window width

Figure 2. Layout of Luminaire and grid points

For example, grid-specific daylight level distribution corresponding to **Figure 3** as obtained from Matlab simulation is given by.

			Nor	n Dayl	lit zon	e				
total	l_daylı	ight =								
111	183	420	597	696	560	560	694	594	416 <mark>-</mark>	180
<mark>108</mark>										
151	219	333	462	562	601	600	560	460	331	218
<mark>149</mark>										
165	214	274	354	422	463	463	422	352	273	213
<mark>164</mark>										
162	196	228	274	316	340	340	315	273	228	195
<u>163</u>										
150	175	191	216	241	254	254	240	216	191	173
<mark>148</mark>										
142	158	165	178	191	200	200	190	177	163	157
<mark>139</mark>										
132	147	149	155	162	166	165	160	153	145	142
127										
132	145	143	145	148	150	149	146	141	137	136
124										
139	152	149	148	150	151	151	147	144	140	140
<mark>128</mark>										
138	144	141	139	141	142	141	139	135	132	133
127										

Positions of 9 luminaires are shown in **Figure 2**. The top row luminaire (2) above the daylit zone can be put off (100% dimming) while two corner luminaires 1 and 3 need to provide significant contribution and thus set at 20% dimming level. In the same way, the luminaire (5) above partially daylit zone can be set at 80% dimming while luminaires 4 and 6 are set at 30% and 40% dimming level. The bottom row luminaires are also to be set at 20%, 20% and 0% dimming level as shown below- **Dim_Level=[20 100 20 30 80 40 20 20 0];**

With the set dimming level, the artificial light level distribution as obtained from Matlab simulation as. Lamp E =

	T =									
267	293	254	211	174	158	157	172	208	247	279
253	315	349	309	257	219	202	205	225	259	304
331	298	313	356	324	274	239	221	221	240	270
309	331	303								
312	360	331	290	258	244	242	255	279	311	333
306										
315	366	342	303	279	267	267	273	292	319	339
313										
322	377	356	323	305	295	298	305	317	338	352
320										
324	384	364	336	319	314	317	321	329	348	362
329										
327	389	373	346	335	333	335	336	342	363	376
340										
325	387	372	347	337	340	343	340	343	364	378
341										
286	343	330	312	303	305	313	309	308	320	326
295										

The corresponding isolux diagram is shown in Figure 4.

Figure 4. Artificial light isolux diagram at set dimming value (January)

Accordingly the integrated light level distribution and average illuminance value, uniformity are achieved as: total_E_integrated =

378	476	674	808	870	718	717	866	802	663	459
361	466	568	642	719	781	803	805	785	719	635
549	447									
478	570	598	628	661	684	684	662	622	582	544
467	474	556	559	564	574	584	582	570	552	539
528	469	465	541	533	519	520	521	521	513	508
510	512	461	464	535	521	501	496	495	498	495
494	501	509	459							
456	531	513	491	481	480	482	481	482	493	504
456										
459	534	516	491	483	483	484	482	483	500	512
464										
464	539	521	495	487	491	494	487	487	504	518
469										
424	487	471	451	444	447	454	448	443	452	459
422										
4 - 4 - 1	E	- 520	0 (1.4			(7				

total_Eavg =538.61; total_Uo =0.67

The isolux diagram for the above integrated lighting is presented in **Figure 5**.

Figure 5. Integrated light isolux diagram: winter (January), north facing window, 12 noon

3. RESULTS AND ANALYSIS

Simulation is done for eight window orientations, five local times and three seasonal sky conditions with the identified skies at Roorkee. The generated database is presented in the following part of this section only for north window orientation during winter season only. It shows specially reduction of lighting load compared to the artificial lighting installation without daylight integration.

For winter. CIE sky type 11(VI.4)

Different Lighting design parameters during winter (J=15, sky type 15(VI.4)), for different times for north window orientation are presented in **Table 1** and in **Figure 6** (A-C).

Fable 1.	Design	parameters for	$W_{nom} =$	$0^{0};$	winter;	Full	Lighting	-Load	= 648W
	0	1			· · · · · · · · · · · · · · · · · · ·		0 0		

Local time	L-Load with	L_Load	For daylight	For integrated light		
	dimming(W)	reduction(W)	Eavg (Lux)	Uo	Eavg (Lux)	Uo
8am	640.80	7.2	99	0.36	564.26	0.66
10am	496.8	151.2	209.66	0.39	607.91	0.66
12noon	410.4	237.6	231.7	0.39	556.34	0.64
2pm	396.0	252.0	272.33	0.38	566.55	0.65
4pm	547.2	100.8	126.56	0.36	568.28	0.71

The generated database for three seasonal conditions is analysed to address the following No.s with respect to window orientation-

i) possible reduction of lighting load

ii) best light quality i.e., overall uniformity on working plane

iii) best light quantity i.e., average illuminance.

To address the first No., we consider the parameter. L_Load reduction (W). For each window orientation, L_Load reduction is added for three seasons and sum of total values are found out. Finally, these values are expressed as percentage of total L_Load with dimming as presented in Table 2.

Figure 6. (A). Average illuminance (E_{avg}) on working plane W_{nom}= North; Season. Winter

Figure 6. (B). % Uniformity of illuminance on working plane $W_{nom}=0^0$ (N). winter

Figure 6(C): % L-Load; W_{nom}= North; Season: Winter Figure6 (A-C): Different Lighting design parameters during winter for W_{nom}= North

Table 2. Energy saving potential for different window orientat	ions
(Total lighting load without dimming = $648*5*3 = 9720$ W)	

			Window	orientations				
	Ν	NE	Е	SE	S	SW	W	NW
Season				Sun	nmer			
Reduction of lighting load (W)	1137	993.6	1281.6	1224	1353.6	1231.2	1303.2	1274.4
Season				Equ	inox			
Reduction of lighting load (W)	813.6	981	1213.2	1396.8	1602	1360.8	1152	936
Season				Wi	nter			
Reduction of lighting load (W)	748.8	865.8	1130.4	1393.2	1418.4	1432.8	1216.8	842.4
Total Load Reduction(W)	2699.4	2840.4	3625.2	4014	4374	4024.8	3672	3052.8
Load Reduction (%)	27.77	29.2	37.3	41.3	45	41.4	37.8	31.4

Maximum reduction of lighting load achieved for south facing window (45%); for South-East and South-West, this value > 40%. On the other hand, north facing window shows minimum reduction. Again, North-East and North-West also

show almost 30% of reduction. Thus, on an average 30% of light load can be reduced through daylight integration. To address the second No., we compute the number of occurrences for the overall uniformity values $\geq 0.60\%$, \geq

0.55%, $\geq 0.50\%$ and <0.50, since 0.60 is considered as desired value. This is shown in **Table 3**.

Figure 6. (A). Average illuminance (E_{avg}) on working plane W_{nom}= North; Season. Winter

Figure 6. (B). % Uniformity of illuminance on working plane $W_{nom}=0^0$ (N). winter

Figure 6(C): % L-Load; W_{nom}= North; Season: Winter **Figure6 (A-C):** Different Lighting design parameters during **winter** for W_{nom}= North

Table 3. Number of occurrences. overall uniformity

Orientations	Uo≥0.6	Uo≥	Uo≥0.50	Uo<0.50
		0.55		
Ν	11	15	15	0
NE	10	11	11	4
Е	6	9	10	5
SE	4	4	7	8
S	1	4	6	9
SW	4	6	7	7
W	8	8	9	6
NW	10	12	12	3

North facing window shows maximum number of occurrences (10) for Uo \geq 0.60; moreover, the NE and NW facing windows also show the same result. On the other hand, S facing window show the minimum number of occurrence

(1); SE and SW facing window show relatively better result as 4.

Thus, N facing window provides best quality lighting on horizontal working plane.

The third No. can be addressed by the observation of the E_{avg} values for integrated light. It reveals that minimum desired value (500 Lux) is achieved in each simulation. It indicates desired quantity of light is ensured in the integrated lighting system.

Hence to ensure quality of light distribution, the energy saving opportunity is to be sacrificed by about 10%.

Energy saving potential of the daylight integrated lighting system is thoroughly studied in this paper through lighting simulation using the developed Matlab program. South facing window orientations viz., S, SE and SW show higher lighting saving of electrical energy whereas the north facing orientations, viz., N, NE and NW show better quality of integrated lighting on horizontal working plane.

ACKNOWLEDGEMENT

The author wishes to acknowledge the support received from Dr.R.Kittler and Dr.Danny H.W. Li through sending their publications which helped to complete this research.

She also likes to thank Indian Society of Lighting Engineers [ISLE] and specially to Mr.P.K.Bandyopadhyay, Past President, ISLE for providing a copy of the Report [6] published by Central Building Research Institute [CBRI] containing Indian Measured Daylight Database.

REFERENCES

- Kittler R., Darula S. (2006). The method of aperture meridians: a simple calculation tool for applying the ISO/CIE, Standard General Sky, *Lighting Research & Technology*, Vol. 38, No. 2, pp. 109-122. DOI: <u>10.1191/13657828061i1630a</u>
- [2] Li D.H.W. (2007). Daylight and energy implications for CIE standard skies, *Energy Conversion and Management*, Vol. 48, No. 3, pp. 745-755. DOI: 10.1016/j.enconman.2006.09.009
- [3] Li D.H.W., Lau C.C.S., Lam J.C. (2003). A study of 15 sky luminance patterns against Hong Kong Data, *Architectural Science Review*, Vol. 46, No. 1, pp. 61-68. DOI: <u>10.1080/00038628.2003.9696965</u>
- [4] Littlefair P.J. (1992). Daylight coefficients for practical computation of internal illuminances, *Lighting Research & Technology*, Vol. 24, No. 3, pp. 127-135. DOI: <u>10.1177/096032719202400302</u>
- [5] Li D.H.W., Cheung G.H.W., Lau C.C.S. (2006). A simplified procedure for determining indoor daylight illuminance using daylight coefficient concept, *Building and Environment*, Vol. 41, No. 5, pp. 578-589. DOI: <u>10.1016/j.buildenv.2005.02.027</u>
- [6] Investigations on evaluation of daylight and solar irradiance parameters for improved daylighting of buildings and energy conservation in different climates, Published by Central Building Research Institute [CBRI] (2001).
- Tregenza P.R., Waters I.M. (1983). Daylight Coefficient, *Lighting Research and Technology*, Vol. 15, No. 2, pp. 65-71. DOI: 10.1177/096032718301500201

- [8] Sutapa M., Biswanath R. (2012). Correlating Indian measured sky luminance distribution and Indian Design clear sky model with five CIE Standard clear sky models, *Journal of Optics*, Vol. 40, No. 4, pp. 150-161. DOI: <u>35400061039526.0002</u>
- [9] Narashiman V., Saxena B.K. (1967). Measurement of Luminance distribution of clear blue sky in India, *Indian J. Pure and Applied Physics*, Vol. 5, No. 3, pp. 83-86. DOI: <u>10.1177/096032719202400204</u>
- [10] Leslie R.P., Radetsky L.C., Smith A.M. (2012). Conceptual design metrics for daylighting, *Lighting*

Research and Technology, Vol. 44, No. 3, pp. 277-290. DOI: <u>10.1177/1477153511423076</u>

- [11] Mardaljevic J. (2000). Simulation of annual daylighting profiles for internal illuminance, *Lighting Research and Technology*, Vol. 32, No. 3, pp. 111-118. DOI: <u>10.1177/096032710003200302</u>
- [12] Reinhart C.F., Herkel S. (2000). The simulation of annual daylight illuminance distributions- a state-ofthe-art comparison of six RADIANCE –based methods, *Energy and buildings*, Vol. 32, No. 2, pp. 167-187. DOI: <u>10.1016/S0378-7788(00)00042-6</u>